How to do RAG without Vector Databases
· 13 min read
Introduction
When it comes to bestowing Large Language Models (LLMs) with long-term memory, the prevalent approach often involves a Retrieval Augmented Generation (RAG) solution, with vector databases acting as the storage mechanism for the long-term memory. This begs the question: Can we achieve the same results without vector databases?
Enter "RecallM: An Adaptable Memory Mechanism with Temporal Understanding for Large Language Models" by Brandon Kynoch, Hugo Latapie, and Dwane van der Sluis. This paper proposes the use of an automatically constructed knowledge graph as the backbone of long-term memory for LLMs.